1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
| using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using OpenCvSharp.Dnn; using System; using System.Collections.Generic; using System.Drawing; using System.IO; using System.Linq; using System.Windows.Forms;
namespace Onnx_Yolov8_Demo { public partial class Form1 : Form { public Form1() { InitializeComponent(); }
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string classer_path; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; string model_path; Mat image; Mat result_image; public string[] class_lables; SessionOptions options; InferenceSession onnx_session; Tensor<float> input_tensor; List<NamedOnnxValue> input_container; IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer; DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; image = new Mat(image_path); pictureBox2.Image = null; }
private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; }
button2.Enabled = false; pictureBox2.Image = null; textBox1.Text = ""; Application.DoEvents();
image = new Mat(image_path); int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows; Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3); Rect roi = new Rect(0, 0, image.Cols, image.Rows); image.CopyTo(new Mat(max_image, roi));
float[] result_array; float factor = (float)(max_image_length / 640.0);
Mat image_rgb = new Mat(); Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB); Mat resize_image = new Mat(); Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
for (int y = 0; y < resize_image.Height; y++) { for (int x = 0; x < resize_image.Width; x++) { input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f; input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f; input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f; } }
input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
dt1 = DateTime.Now; result_infer = onnx_session.Run(input_container); dt2 = DateTime.Now;
results_onnxvalue = result_infer.ToArray();
result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
Mat result_data = new Mat(20, 8400, MatType.CV_32F, result_array); result_data = result_data.T(); List<Rect2d> position_boxes = new List<Rect2d>(); List<int> class_ids = new List<int>(); List<float> confidences = new List<float>(); List<float> rotations = new List<float>(); for (int i = 0; i < result_data.Rows; i++) { Mat classes_scores = new Mat(result_data, new Rect(4, i, 15, 1)); OpenCvSharp.Point max_classId_point, min_classId_point; double max_score, min_score; Cv2.MinMaxLoc(classes_scores, out min_score, out max_score, out min_classId_point, out max_classId_point); if (max_score > 0.25) { float cx = result_data.At<float>(i, 0); float cy = result_data.At<float>(i, 1); float ow = result_data.At<float>(i, 2); float oh = result_data.At<float>(i, 3); double x = (cx - 0.5 * ow) * factor; double y = (cy - 0.5 * oh) * factor; double width = ow * factor; double height = oh * factor; Rect2d box = new Rect2d(); box.X = x; box.Y = y; box.Width = width; box.Height = height; position_boxes.Add(box); class_ids.Add(max_classId_point.X); confidences.Add((float)max_score); rotations.Add(result_data.At<float>(i, 19)); } } int[] indexes = new int[position_boxes.Count]; CvDnn.NMSBoxes(position_boxes, confidences, 0.25f, 0.7f, out indexes); List<RotatedRect> rotated_rects = new List<RotatedRect>(); for (int i = 0; i < indexes.Length; i++) { int index = indexes[i]; float w = (float)position_boxes[index].Width; float h = (float)position_boxes[index].Height; float x = (float)position_boxes[index].X + w / 2; float y = (float)position_boxes[index].Y + h / 2; float r = rotations[index]; float w_ = w > h ? w : h; float h_ = w > h ? h : w; r = (float)((w > h ? r : (float)(r + Math.PI / 2)) % Math.PI); RotatedRect rotate = new RotatedRect(new Point2f(x, y), new Size2f(w_, h_), (float)(r * 180.0 / Math.PI)); rotated_rects.Add(rotate); }
result_image = image.Clone();
for (int i = 0; i < indexes.Length; i++) { int index = indexes[i]; Point2f[] points = rotated_rects[i].Points();
for (int j = 0; j < 4; j++) { Cv2.Line(result_image, (OpenCvSharp.Point)points[j], (OpenCvSharp.Point)points[(j + 1) % 4], new Scalar(0, 255, 0), 2); }
Cv2.PutText(result_image, class_lables[class_ids[index]] + "-" + confidences[index].ToString("0.00"), (OpenCvSharp.Point)points[0], HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 255), 2); }
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
button2.Enabled = true; }
private void Form1_Load(object sender, EventArgs e) { model_path = "model/yolov8s-obb.onnx"; classer_path = "model/lable.txt";
options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0);
onnx_session = new InferenceSession(model_path, options);
input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 }); input_container = new List<NamedOnnxValue>();
List<string> str = new List<string>(); StreamReader sr = new StreamReader(classer_path); string line; while ((line = sr.ReadLine()) != null) { str.Add(line); } class_lables = str.ToArray();
image_path = "test_img/1.png"; pictureBox1.Image = new Bitmap(image_path); image = new Mat(image_path); }
} }
|