1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
| using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Windows.Forms;
namespace Onnx_Yolov8_Demo { public partial class Form1 : Form { public Form1() { InitializeComponent(); }
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string classer_path; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; string model_path; Mat image; DetectionResult result_pro; Mat result_image; Result result;
SessionOptions options; InferenceSession onnx_session; Tensor<float> input_tensor; List<NamedOnnxValue> input_container; IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer; DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; image = new Mat(image_path); pictureBox2.Image = null; }
private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; }
button2.Enabled = false; pictureBox2.Image = null; textBox1.Text = ""; pictureBox2.Image = null; Application.DoEvents();
image = new Mat(image_path); int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows; Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3); Rect roi = new Rect(0, 0, image.Cols, image.Rows); image.CopyTo(new Mat(max_image, roi));
float[] factors = new float[2]; factors[0] = factors[1] = (float)(max_image_length / 640.0);
Mat image_rgb = new Mat(); Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB); Mat resize_image = new Mat(); Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
for (int y = 0; y < resize_image.Height; y++) { for (int x = 0; x < resize_image.Width; x++) { input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f; input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f; input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f; } }
input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
dt1 = DateTime.Now; result_infer = onnx_session.Run(input_container); dt2 = DateTime.Now;
results_onnxvalue = result_infer.ToArray();
result_tensors = results_onnxvalue[0].AsTensor<float>();
float[] result_array = result_tensors.ToArray();
resize_image.Dispose(); image_rgb.Dispose();
result_pro = new DetectionResult(classer_path, factors); result = result_pro.process_result(result_array); result_image = result_pro.draw_result2(result, image.Clone());
if (!result_image.Empty()) { pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms\r\n"; textBox1.Text += "Count:" + result.length; } else { textBox1.Text = "无信息"; }
button2.Enabled = true; }
private void Form1_Load(object sender, EventArgs e) { model_path = "model/best.onnx"; classer_path = "model/lable.txt";
options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0);
onnx_session = new InferenceSession(model_path, options);
input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 }); input_container = new List<NamedOnnxValue>();
image_path = "test_img/0.jpg"; pictureBox1.Image = new Bitmap(image_path); image = new Mat(image_path);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox1.Image); }
private void pictureBox2_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox2.Image); }
} }
|