1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
| using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.Linq; using System.Windows.Forms;
namespace U2Net_Portrait { public partial class frmMain : Form { public frmMain() { InitializeComponent(); }
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string startupPath; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; string model_path; Mat image; int modelSize = 512;
SessionOptions options; InferenceSession onnx_session; Tensor<float> input_tensor; List<NamedOnnxValue> input_ontainer; IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer; DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors; float[] result_array;
private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; image = new Mat(image_path); pictureBox2.Image = null; }
private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; }
textBox1.Text = ""; pictureBox2.Image = null;
int oldwidth = image.Cols; int oldheight = image.Rows;
int maxEdge = Math.Max(image.Rows, image.Cols); float ratio = 1.0f * modelSize / maxEdge; int newHeight = (int)(image.Rows * ratio); int newWidth = (int)(image.Cols * ratio); Mat resize_image = image.Resize(new OpenCvSharp.Size(newWidth, newHeight)); int width = resize_image.Cols; int height = resize_image.Rows; if (width != modelSize || height != modelSize) { resize_image = resize_image.CopyMakeBorder(0, modelSize - newHeight, 0, modelSize - newWidth, BorderTypes.Constant, new Scalar(255, 255, 255)); }
Cv2.CvtColor(resize_image, resize_image, ColorConversionCodes.BGR2RGB);
for (int y = 0; y < resize_image.Height; y++) { for (int x = 0; x < resize_image.Width; x++) { input_tensor[0, 0, y, x] = (resize_image.At<Vec3b>(y, x)[0] / 255f - 0.485f) / 0.229f; input_tensor[0, 1, y, x] = (resize_image.At<Vec3b>(y, x)[1] / 255f - 0.456f) / 0.224f; input_tensor[0, 2, y, x] = (resize_image.At<Vec3b>(y, x)[2] / 255f - 0.406f) / 0.225f; } }
input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_image", input_tensor));
dt1 = DateTime.Now; result_infer = onnx_session.Run(input_ontainer); dt2 = DateTime.Now;
results_onnxvalue = result_infer.ToArray();
result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
for (int i = 0; i < result_array.Length; i++) { result_array[i] = 1 - result_array[i]; }
float maxVal = result_array.Max(); float minVal = result_array.Min();
for (int i = 0; i < result_array.Length; i++) { result_array[i] = (result_array[i] - minVal) / (maxVal - minVal) * 255; }
Mat result_image = new Mat(512, 512, MatType.CV_32F, result_array);
if (width != modelSize || height != modelSize) { Rect rect = new Rect(0, 0, width, height); result_image = result_image.Clone(rect); } result_image = result_image.Resize(new OpenCvSharp.Size(oldwidth, oldheight));
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
}
private void Form1_Load(object sender, EventArgs e) { startupPath = Application.StartupPath;
model_path = startupPath + "\\model\\u2net_portrait.onnx";
modelSize = 512;
options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);
onnx_session = new InferenceSession(model_path, options);
input_ontainer = new List<NamedOnnxValue>();
input_tensor = new DenseTensor<float>(new[] { 1, 3, 512, 512 });
}
private void button3_Click(object sender, EventArgs e) { if (pictureBox2.Image == null) { return; } Bitmap output = new Bitmap(pictureBox2.Image); var sdf = new SaveFileDialog(); sdf.Title = "保存"; sdf.Filter = "Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf"; if (sdf.ShowDialog() == DialogResult.OK) { switch (sdf.FilterIndex) { case 1: { output.Save(sdf.FileName, ImageFormat.Bmp); break; } case 2: { output.Save(sdf.FileName, ImageFormat.Emf); break; } case 3: { output.Save(sdf.FileName, ImageFormat.Exif); break; } case 4: { output.Save(sdf.FileName, ImageFormat.Gif); break; } case 5: { output.Save(sdf.FileName, ImageFormat.Icon); break; } case 6: { output.Save(sdf.FileName, ImageFormat.Jpeg); break; } case 7: { output.Save(sdf.FileName, ImageFormat.Png); break; } case 8: { output.Save(sdf.FileName, ImageFormat.Tiff); break; } case 9: { output.Save(sdf.FileName, ImageFormat.Wmf); break; } } MessageBox.Show("保存成功,位置:" + sdf.FileName);
} } } }
|