【转载】C# RAM Stable Diffusion 提示词反推 Onnx Demo

原项目地址:

1
github地址:https://github.com/xinyu1205/recognize-anything

Open-source and strong foundation image recognition models.

效果

效果

模型信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 384, 384]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 4585]
---------------------------------------------------------------

项目代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;

SessionOptions options;
InferenceSession onnx_session;
Tensor<float> input_tensor;
List<NamedOnnxValue> input_container;
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
DisposableNamedOnnxValue[] results_onnxvalue;

Tensor<float> result_tensors;

StringBuilder sbTags = new StringBuilder();
StringBuilder sbTagsCN = new StringBuilder();
StringBuilder sb = new StringBuilder();

public string[] class_names;

List<Tag> ltTag = new List<Tag>();

private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
}

float[] mean = { 0.485f, 0.456f, 0.406f };
float[] std = { 0.229f, 0.224f, 0.225f };

public void Normalize(Mat src)
{
src.ConvertTo(src, MatType.CV_32FC3, 1.0 / 255);
Mat[] bgr = src.Split();
for (int i = 0; i < bgr.Length; ++i)
{
bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1 / std[i], (0.0 - mean[i]) / std[i]);
}
Cv2.Merge(bgr, src);
foreach (Mat channel in bgr)
{
channel.Dispose();
}
}

public float[] ExtractMat(Mat src)
{
OpenCvSharp.Size size = src.Size();
int channels = src.Channels();
float[] result = new float[size.Width * size.Height * channels];
GCHandle resultHandle = default;
try
{
resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);
IntPtr resultPtr = resultHandle.AddrOfPinnedObject();
for (int i = 0; i < channels; ++i)
{
Mat cmat = new Mat(
src.Height, src.Width,
MatType.CV_32FC1,
resultPtr + i * size.Width * size.Height * sizeof(float));

Cv2.ExtractChannel(src, cmat, i);
cmat.Dispose();
}
}
finally
{
resultHandle.Free();
}
return result;
}

private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}

button2.Enabled = false;
textBox1.Text = "";
sb.Clear();
sbTagsCN.Clear();
sbTags.Clear();
Application.DoEvents();

image = new Mat(image_path);

//图片缩放
Mat resize_image = new Mat();
Cv2.Resize(image, resize_image, new OpenCvSharp.Size(384, 384));

Normalize(resize_image);

var data = ExtractMat(resize_image);

resize_image.Dispose();
image.Dispose();

// 输入Tensor
input_tensor = new DenseTensor<float>(data, new[] { 1, 3, 384, 384 });

//将 input_tensor 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));

dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_container);
dt2 = DateTime.Now;

// 将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray();

// 读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor<float>();

var result_array = result_tensors.ToArray();

double[] scores = new double[result_array.Length];
for (int i = 0; i < result_array.Length; i++)
{
double score = 1 / (1 + Math.Exp(result_array[i] * -1));
scores[i] = score;
}
List<Tag> tags = new List<Tag>(ltTag);

List<Tag> topTags = new List<Tag>();
for (int i = 0; i < scores.Length; i++)
{
if (scores[i] > tags[i].Threshold)
{
tags[i].Score = scores[i];
topTags.Add(tags[i]);
}
}
topTags.OrderByDescending(x => x.Score).ToList();

foreach (var item in topTags)
{
sbTagsCN.Append(item.NameCN + ",");
sbTags.Append(item.Name + ",");
}
sbTagsCN.Length--;
sbTags.Length--;

sb.AppendLine("Tags:" + sbTags.ToString());
sb.AppendLine("标签:" + sbTagsCN.ToString());
sb.AppendLine("------------------");
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
textBox1.Text = sb.ToString();
button2.Enabled = true;
}

private void Form1_Load(object sender, EventArgs e)
{
model_path = "model/ram.onnx";

// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

// 创建输入容器
input_container = new List<NamedOnnxValue>();

image_path = "test_img/1.jpg";
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);

string[] thresholdLines = File.ReadAllLines("model/ram_tag_list_threshold.txt");
string[] tagChineseLines = File.ReadAllLines("model/ram_tag_list_chinese.txt");
string[] tagLines = File.ReadAllLines("model/ram_tag_list.txt");

for (int i = 0; i < tagLines.Length; i++)
{
ltTag.Add(new Tag { NameCN = tagChineseLines[i], Name = tagLines[i], Threshold = double.Parse(thresholdLines[i]) });
}
}

}
}

From 公众号:天天代码码天天


【转载】C# RAM Stable Diffusion 提示词反推 Onnx Demo
https://bgmh.work/2024/04/20/CSharp-RAM-Stable-Diffusion-提示词反推-Onnx-Demo/
作者
OuHuanHua
发布于
2024年4月20日
许可协议