1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
| using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.IO; using System.Linq; using System.Runtime.InteropServices; using System.Text; using System.Windows.Forms; namespace Onnx_Demo { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; string model_path; Mat image; SessionOptions options; InferenceSession onnx_session; Tensor<float> input_tensor; List<NamedOnnxValue> input_container; IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer; DisposableNamedOnnxValue[] results_onnxvalue; Tensor<float> result_tensors; StringBuilder sbTags = new StringBuilder(); StringBuilder sbTagsCN = new StringBuilder(); StringBuilder sb = new StringBuilder(); public string[] class_names; List<Tag> ltTag = new List<Tag>(); private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; image = new Mat(image_path); } float[] mean = { 0.485f, 0.456f, 0.406f }; float[] std = { 0.229f, 0.224f, 0.225f }; public void Normalize(Mat src) { src.ConvertTo(src, MatType.CV_32FC3, 1.0 / 255); Mat[] bgr = src.Split(); for (int i = 0; i < bgr.Length; ++i) { bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1 / std[i], (0.0 - mean[i]) / std[i]); } Cv2.Merge(bgr, src); foreach (Mat channel in bgr) { channel.Dispose(); } } public float[] ExtractMat(Mat src) { OpenCvSharp.Size size = src.Size(); int channels = src.Channels(); float[] result = new float[size.Width * size.Height * channels]; GCHandle resultHandle = default; try { resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned); IntPtr resultPtr = resultHandle.AddrOfPinnedObject(); for (int i = 0; i < channels; ++i) { Mat cmat = new Mat( src.Height, src.Width, MatType.CV_32FC1, resultPtr + i * size.Width * size.Height * sizeof(float)); Cv2.ExtractChannel(src, cmat, i); cmat.Dispose(); } } finally { resultHandle.Free(); } return result; } private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; } button2.Enabled = false; textBox1.Text = ""; sb.Clear(); sbTagsCN.Clear(); sbTags.Clear(); Application.DoEvents(); image = new Mat(image_path); Mat resize_image = new Mat(); Cv2.Resize(image, resize_image, new OpenCvSharp.Size(384, 384)); Normalize(resize_image); var data = ExtractMat(resize_image); resize_image.Dispose(); image.Dispose(); input_tensor = new DenseTensor<float>(data, new[] { 1, 3, 384, 384 }); input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor)); dt1 = DateTime.Now; result_infer = onnx_session.Run(input_container); dt2 = DateTime.Now; results_onnxvalue = result_infer.ToArray(); result_tensors = results_onnxvalue[0].AsTensor<float>(); var result_array = result_tensors.ToArray(); double[] scores = new double[result_array.Length]; for (int i = 0; i < result_array.Length; i++) { double score = 1 / (1 + Math.Exp(result_array[i] * -1)); scores[i] = score; } List<Tag> tags = new List<Tag>(ltTag); List<Tag> topTags = new List<Tag>(); for (int i = 0; i < scores.Length; i++) { if (scores[i] > tags[i].Threshold) { tags[i].Score = scores[i]; topTags.Add(tags[i]); } } topTags.OrderByDescending(x => x.Score).ToList(); foreach (var item in topTags) { sbTagsCN.Append(item.NameCN + ","); sbTags.Append(item.Name + ","); } sbTagsCN.Length--; sbTags.Length--; sb.AppendLine("Tags:" + sbTags.ToString()); sb.AppendLine("标签:" + sbTagsCN.ToString()); sb.AppendLine("------------------"); sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms"); textBox1.Text = sb.ToString(); button2.Enabled = true; } private void Form1_Load(object sender, EventArgs e) { model_path = "model/ram.onnx"; options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0); onnx_session = new InferenceSession(model_path, options); input_container = new List<NamedOnnxValue>(); image_path = "test_img/1.jpg"; pictureBox1.Image = new Bitmap(image_path); image = new Mat(image_path); string[] thresholdLines = File.ReadAllLines("model/ram_tag_list_threshold.txt"); string[] tagChineseLines = File.ReadAllLines("model/ram_tag_list_chinese.txt"); string[] tagLines = File.ReadAllLines("model/ram_tag_list.txt"); for (int i = 0; i < tagLines.Length; i++) { ltTag.Add(new Tag { NameCN = tagChineseLines[i], Name = tagLines[i], Threshold = double.Parse(thresholdLines[i]) }); } } } }
|