1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
| using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; namespace Onnx_Yolov8_Detect { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string startupPath; string classer_path; string model_path; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; Mat image; Mat result_image; SessionOptions options; InferenceSession onnx_session; Tensor<float> input_tensor; List<NamedOnnxValue> input_container; IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer; DisposableNamedOnnxValue[] results_onnxvalue; Tensor<float> result_tensors; float[] result_array; float[] factors = new float[2]; Result result; DetectionResult result_pro; StringBuilder sb = new StringBuilder(); private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; pictureBox2.Image = null; textBox1.Text = ""; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); image = new Mat(image_path); } private void Form1_Load(object sender, EventArgs e) { startupPath = Application.StartupPath + "\\model\\"; model_path = startupPath + "yolov8n-hard-hat-detection.onnx"; classer_path = startupPath + "lable.txt"; // 创建输出会话 options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行 // 创建推理模型类,读取本地模型文件 onnx_session = new InferenceSession(model_path, options); // 输入Tensor input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 }); // 创建输入容器 input_container = new List<NamedOnnxValue>(); } private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; } textBox1.Text = "检测中,请稍等……"; pictureBox2.Image = null; Application.DoEvents(); //图片缩放 image = new Mat(image_path); int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows; Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3); Rect roi = new Rect(0, 0, image.Cols, image.Rows); image.CopyTo(new Mat(max_image, roi)); factors[0] = factors[1] = (float)(max_image_length / 640.0); //将图片转为RGB通道 Mat image_rgb = new Mat(); Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB); Mat resize_image = new Mat(); Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640)); //输入Tensor for (int y = 0; y < resize_image.Height; y++) { for (int x = 0; x < resize_image.Width; x++) { input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f; input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f; input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f; } } //将 input_tensor 放入一个输入参数的容器,并指定名称 input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor)); dt1 = DateTime.Now; //运行 Inference 并获取结果 result_infer = onnx_session.Run(input_container); dt2 = DateTime.Now; //将输出结果转为DisposableNamedOnnxValue数组 results_onnxvalue = result_infer.ToArray(); //读取第一个节点输出并转为Tensor数据 result_tensors = results_onnxvalue[0].AsTensor<float>(); result_array = result_tensors.ToArray(); resize_image.Dispose(); image_rgb.Dispose(); result_pro = new DetectionResult(classer_path, factors); result = result_pro.process_result(result_array); result_image = result_pro.draw_result(result, image.Clone()); if (!result_image.Empty()) { pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); sb.Clear(); sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms"); sb.AppendLine("------------------------------"); for (int i = 0; i < result.length; i++) { sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})" , result.classes[i] , result.scores[i].ToString("0.00") , result.rects[i].TopLeft.X , result.rects[i].TopLeft.Y , result.rects[i].BottomRight.X , result.rects[i].BottomRight.Y )); } textBox1.Text = sb.ToString(); } else { textBox1.Text = "无信息"; } } private void pictureBox2_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox2.Image); } private void pictureBox1_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox1.Image); } } }
CHASRP
|