1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
| using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.Linq; using System.Windows.Forms; namespace Onnx_Demo { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string startupPath; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; string model_path; Mat image; Mat result_image; SessionOptions options; InferenceSession onnx_session; Tensor<float> input_tensor; List<NamedOnnxValue> input_container; IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer; DisposableNamedOnnxValue[] results_onnxvalue; Tensor<float> result_tensors; int inpHeight,inpWidth; private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; image = new Mat(image_path); pictureBox2.Image = null; } private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; } button2.Enabled = false; pictureBox2.Image = null; textBox1.Text = ""; Application.DoEvents(); image = new Mat(image_path); inpWidth = image.Width; inpHeight = image.Height; Mat image_rgb = new Mat(); Cv2.CvtColor(image, image_rgb, ColorConversionCodes.BGR2RGB); input_tensor = new DenseTensor<float>(new[] { 1, 3, inpHeight, inpWidth }); for (int y = 0; y < image_rgb.Height; y++) { for (int x = 0; x < image_rgb.Width; x++) { input_tensor[0, 0, y, x] = image_rgb.At<Vec3b>(y, x)[0] / 255f; input_tensor[0, 1, y, x] = image_rgb.At<Vec3b>(y, x)[1] / 255f; input_tensor[0, 2, y, x] = image_rgb.At<Vec3b>(y, x)[2] / 255f; } } input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor)); dt1 = DateTime.Now; result_infer = onnx_session.Run(input_container); dt2 = DateTime.Now; results_onnxvalue = result_infer.ToArray(); result_tensors = results_onnxvalue[0].AsTensor<float>(); var result_array = result_tensors.ToArray(); for (int i = 0; i < result_array.Length; i++) { result_array[i] = result_array[i] * 255f; if (result_array[i] < 0) { result_array[i] = 0; } else if (result_array[i] > 255) { result_array[i] = 255; } } int out_h = result_tensors.Dimensions[2]; int out_w = result_tensors.Dimensions[3]; float[] temp_r = new float[out_h * out_w]; float[] temp_g = new float[out_h * out_w]; float[] temp_b = new float[out_h * out_w]; Array.Copy(result_array, temp_r, out_h * out_w); Array.Copy(result_array, out_h * out_w, temp_g, 0, out_h * out_w); Array.Copy(result_array, out_h * out_w * 2, temp_b, 0, out_h * out_w); Mat rmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_r); Mat gmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_g); Mat bmat = new Mat(out_h, out_w, MatType.CV_32FC1, temp_b); result_image = new Mat(); Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image); result_image.ConvertTo(result_image, MatType.CV_8UC3); pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms"; button2.Enabled = true; } private void Form1_Load(object sender, EventArgs e) { startupPath = System.Windows.Forms.Application.StartupPath; model_path = "model/c2pnet_outdoor_HxW.onnx"; options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0); onnx_session = new InferenceSession(model_path, options); input_container = new List<NamedOnnxValue>(); image_path = "test_img/0.jpg"; pictureBox1.Image = new Bitmap(image_path); image = new Mat(image_path); } private void pictureBox1_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox1.Image); } private void pictureBox2_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox2.Image); } SaveFileDialog sdf = new SaveFileDialog(); private void button3_Click(object sender, EventArgs e) { if (pictureBox2.Image == null) { return; } Bitmap output = new Bitmap(pictureBox2.Image); sdf.Title = "保存"; sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf"; if (sdf.ShowDialog() == DialogResult.OK) { switch (sdf.FilterIndex) { case 1: { output.Save(sdf.FileName, ImageFormat.Jpeg); break; } case 2: { output.Save(sdf.FileName, ImageFormat.Png); break; } case 3: { output.Save(sdf.FileName, ImageFormat.Bmp); break; } case 4: { output.Save(sdf.FileName, ImageFormat.Emf); break; } case 5: { output.Save(sdf.FileName, ImageFormat.Exif); break; } case 6: { output.Save(sdf.FileName, ImageFormat.Gif); break; } case 7: { output.Save(sdf.FileName, ImageFormat.Icon); break; } case 8: { output.Save(sdf.FileName, ImageFormat.Tiff); break; } case 9: { output.Save(sdf.FileName, ImageFormat.Wmf); break; } } MessageBox.Show("保存成功,位置:" + sdf.FileName); } } } }
|