【转载】神奇的图像修复技术:C# LaMa Image Inpainting Demo,让你轻松移除万物!

效果

效果

原项目

1
LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

项目核心就是使用big_lama_regular_inpaint.onnx模型+mask.jpg从test.jpg中将人移除,是不是很神奇。

模型信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:image
tensor:Float[1, 3, 1000, 1504]
name:mask
tensor:Float[1, 1, 1000, 1504]
---------------------------------------------------------------

Outputs
-------------------------
name:inpainted
tensor:Float[1, 1000, 1504, 3]
---------------------------------------------------------------

项目源代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
}

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
string image_path_mask = "";
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
string model_path;
Mat image;
Mat image_mask;

SessionOptions options;
InferenceSession onnx_session;
Tensor<float> input_tensor;
Tensor<float> input_tensor_mask;
List<NamedOnnxValue> input_container;
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;

StringBuilder sb = new StringBuilder();

private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
textBox1.Text = "";
image = new Mat(image_path);
pictureBox2.Image = null;
}

private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}

button2.Enabled = false;
pictureBox2.Image = null;
textBox1.Text = "";

image = new Mat(image_path);
int w = image.Width;
int h = image.Height;
image_mask = new Mat(image_path_mask);

Common.Preprocess(image, image_mask, input_tensor, input_tensor_mask);

//将 input_tensor 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));

//将 input_tensor_mask 放入一个输入参数的容器,并指定名称
input_container.Add(NamedOnnxValue.CreateFromTensor("mask", input_tensor_mask));

dt1 = DateTime.Now;
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_container);
dt2 = DateTime.Now;

Mat result = Common.Postprocess(result_infer);

Cv2.Resize(result, result, new OpenCvSharp.Size(w, h));

sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");

pictureBox2.Image = new Bitmap(result.ToMemoryStream());
textBox1.Text = sb.ToString();

button2.Enabled = true;
}

private void Form1_Load(object sender, EventArgs e)
{
model_path = "model/big_lama_regular_inpaint.onnx";

// 创建输出会话,用于输出模型读取信息
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

// 输入Tensor
input_tensor = new DenseTensor<float>(new[] { 1, 3, 1000, 1504 });

input_tensor_mask = new DenseTensor<float>(new[] { 1, 1, 1000, 1504 });

// 创建输入容器
input_container = new List<NamedOnnxValue>();

image_path = "test_img/test.jpg";
pictureBox1.Image = new Bitmap(image_path);

image_path_mask = "test_img/mask.jpg";
pictureBox3.Image = new Bitmap(image_path_mask);
}
}
}

From 公众号:天天代码码天天


【转载】神奇的图像修复技术:C# LaMa Image Inpainting Demo,让你轻松移除万物!
https://bgmh.work/2024/04/20/神奇的图像修复技术:CSharp-LaMa-Image-Inpainting-Demo,让你轻松移除万物!/
作者
OuHuanHua
发布于
2024年4月20日
许可协议